



Discovery and Use of Operational Ocean Data Products and Services 06 - 10 March, 2017

# Introduction to FERRET

An Analysis Tool for Gridded and Non-Gridded Data

Courtesy: http://www.ferret.noaa.gov/Ferret/



#### **FERRET**



#### An Analysis Tool for Gridded and Non-Gridded Data

- Ferret is an interactive computer visualization and analysis environment designed to meet the needs of oceanographers and meteorologists analyzing large and complex gridded data sets.
- It runs on most Unix systems, and on Windows XP/NT/9x using X windows for display.
- It can transparently access extensive remote Internet data bases using OPeNDAP





#### Gridded data sets

- multi-dimensional model outputs
- gridded data products (e.g., climatologies)
- singly dimensioned arrays such as time series and profiles
- scattered n-tuples (optionally, grid-able using Ferret's objective analysis procedures)





## Ability of Ferret

- To define new variables interactively as mathematical expressions involving data set variables and abstract coordinates
  - Density = Cd T dt (Cd T[z=@din])
  - Anomaly = SST SST[I=@ave]
  - -MLD = temp[z=@loc:0]
- Calculations can be applied over arbitrarily shaped regions.
- external functions written in FORTRAN, C, or C++ can be merged seamlessly into Ferret at runtime.





### Data sets Ferret can handle

- FERRET can handle ASCII and Binary data sets. But mainly deals with NetCDF files
- Data can be gridded data or non gridded data.
- Gridded data means data on regular interval with equal spacing in x and y.
  - Eg: A two dimensional SST data on Indian Ocean region can be from 30E - 120E and 30S - 30 N with spacing x = 1 and y = 1.





Sample gridded data looks like this:

| Lon Lat |       |   | SST   |
|---------|-------|---|-------|
| 30.0    | -30.0 |   | 19.37 |
| 31.0    | -30.0 |   | 19.32 |
| 32.0    | -30.0 |   | 19.29 |
|         |       |   |       |
|         |       |   |       |
| 30.0    | -29.0 |   | 19.37 |
| 31.0    | -29.0 |   | 19.32 |
| 32.0    | -29.0 |   | 19.29 |
|         |       |   |       |
|         |       |   |       |
|         |       |   |       |
|         |       |   |       |
| 30.0    | 30.0  |   | 9999  |
| 31.0    | 30.0  | ) | 9999  |
| 32.0    | 30.0  |   | 9999  |







- Further Ferret handles 1D, 2D, 3D and 4D dimension data sets
  - Eg: 1D data SST observation from Buoy
    - (Lon, Lat, Depth fixed Time varying)
  - Eg: 2D data SST for Arabian Sea (40 80E and 0 30N)
    - (Lon and Lat varying, Depth and Time fixed)
  - Eg: 3D data Temperature for Arabian Sea (40 80E and 0 30N and Z: 0 1000 depth) for the month of January
    - (Lon, Lat and Depth varying, Time fixed)
  - Eg: 4D data Temperature for Arabian Sea (40 80E and 0 30N and Z: 0 1000 depth) for the months
     January December
    - (Lon, Lat and Depth, Time all varying)





## 1D data sample

| DS01 | 12/09/2006 6:00  | 27.71 |
|------|------------------|-------|
| DS01 | 12/09/2006 9:00  | 27.85 |
| DS01 | 12/09/2006 12:00 | 28.28 |
| DS01 | 12/09/2006 15:00 | 28.09 |
| DS01 | 12/09/2006 18:00 | 28.38 |
| DS01 | 12/09/2006 21:00 | 27.96 |
| DS01 | 12/10/2006 00:00 | 27.52 |
| DS01 | 12/10/2006 3:00  | 28.04 |
| DS01 | 12/10/2006 6:00  | 28.16 |
| DS01 | 12/10/2006 9:00  | 27.88 |
| DS01 | 12/10/2006 12:00 | 27.93 |
| DS01 | 12/10/2006 15:00 | 28.07 |
| DS01 | 12/10/2006 18:00 | 28.01 |
| DS01 | 12/10/2006 21:00 | 27.73 |
| DS01 | 12/11/2006 00:00 | 27.37 |
| DS01 | 12/11/2006 3:00  | 27.38 |
| DS01 | 12/11/2006 6:00  | 27.52 |
| DS01 | 12/11/2006 9:00  | 27.52 |
| DS01 | 12/11/2006 12:00 | 27.68 |







# 2D sample data

| Lon  | Lat   | SST   |
|------|-------|-------|
| 30.0 | -30.0 | 19.37 |
| 31.0 | -30.0 | 19.32 |
| 32.0 | -30.0 | 19.29 |
|      |       |       |
|      |       |       |
| 30.0 | -29.0 | 19.37 |
| 31.0 | -29.0 | 19.32 |
| 32.0 | -29.0 | 19.29 |
|      |       |       |
|      |       |       |
|      |       |       |
|      |       |       |
| 30.0 | 30.0  | 9999  |
| 31.0 | 30.0  | 9999  |
| 32.0 | 30.0  | 9999  |







# 3D sample data









# Getting Started

- Quick way know about Ferret is run the tutorial provided with the s/w
  - For this first type ferret at the prompt and enter return key. This will will result in
    - % ferret yes?
  - Then give go tutorial at the prompt
    - yes? GO tutorial
  - There are multitude of plots possible with in Ferret











F[RRE] (# 3.16 NOAA/PUEL 1MAP Apr 10 1994 10:28/57

#### yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-i)







yes? SET WINDOW/SIZE=.9! (bigger 'cause there will be 4 plots)
yes? SET VIEWPORT UL yes? PLOT/i=1:10 1/i yes? SET VIEWPORT LL
yes? PLOT/i=1:10/SYMBOLS 1/i yes? SET VIEWPORT LR
yes? PLOT/i=1:10/SYMBOLS=2/LINE/VLIMITS=-1:2:0.25 iinverse
yes? SET VIEWPORT UR yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-i)







FERRET Ver. 3.10 MOAL/PREE THAP Apr 10 1994 10:58:29

#### VECTOR/i=1:20/j=1:20 i+cos(j/5)+5,i-j







yes? SHADE/i=1:40/j=1:40 cos(i/5)\*sin(j/10)



















#### yes? FILL/X=160W:40W/Y=20N:70N/level=(-7000,4000,500) ROSE













# yes? SHADE/L=1 SST yes? GO fland



# yes? SHADE/L=1 AIRT-SST yes? GO fland







#### **VECTOR/OVERLAY/L=1 UWND, VWND**







yes? SET WINDOW/SIZE=0.7

yes? SET VIEW UI
yes? SHADE/L=3 sst
yes? SET VIEW UR
yes? SHADE/L=6 sst
yes? SET VIEW LL
yes? SHADE/L=9 sst
yes? SET VIEW LR

yes? SHADE/L=12 sst







## yes? CANCEL VIEWPORTS yes? SHADE/LINE SST[L=1:12@AVE]



SEA SURFACE TEMPERATURE (Deg C)

yes? SET WINDOW/SIZE=.7

yes? LET SST\_AVE = SST[L=1:12@AVE]

yes? LET/TITLE="SST Anomaly" SST\_ANOM = SST - SST\_AVE

yes? SET VIEW UL yes? SHADE/L=3/LEVELS=(-14)(-5,5,1)(14) sst\_anom

yes? SET VIEW UR yes? SHADE/L=6/LEVELS=(-14)(-5,5,1)(14) sst\_anom

yes? SET VIEW LL yes? SHADE/L=9/LEVELS=(-14)(-5,5,1)(14) sst\_anom

yes? SET VIEW LR yes? SHADE/L=9/LLVLLS=(-14)(-5,5,1)(14) sst\_anom







yes? CANCEL VIEWPORTS

yes? SET WINDOW/SIZE=.5

yes? SET REGION/X=180

yes? FILL/Y=70S:70N/L=1:48/LEVELS=(-7,7,1) SST\_ANOM

FERRET Ver. 3.10 MOAL/PUEL THAP



SST Anomaly





In this class You've been shown a number of FERRET's capabilities:

- Line, contour, vector and shaded plots
- Multiple viewports, and windows
- Color controls
- Abstract mathematical functions, data from data sets, and new variables defined from old ones
- Transformations and plots along various axes

And there's much more to explore .....